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0. INTRODUCTION

1. MATHEMATICS OF FINANCE

1.1 Interest rates (*)

We start by rethinking the following relations

(Future Value) = (Present Value)× (Interest Rate)

(Present Value) = (Future Value)× (Discount Rate).

Interest rate, such as the return to savings and the cost of borrowing, is the price at which resources
are transferred between different points of time. In other words, financial assets have time values
and the interest rate (or the discount rate) translates the values of an asset between the present and
the future.

Let us consider the value of a financial asset, which is described as a function of time, P (t). Put
W (t1, t2) = P (t2)

P (t1)
. Then we can interpret W (t1, t2) as the relative price that translates the value

of this asset at one time t1 into the equivalent value at another point of time t2. We attribute the
following properties to W :

(I-1) W (t, t) = 1 for ∀t ;

(I-2) W (t1, t2) > 1 for t1 < t2 ;

(I-3) W (t1, t2) ·W (t2, t3) = W (t1, t3) for ∀t1, t2, t3.

The first condition is a trivial statement. The second condition means that the asset is a scarce
good. The last condition describes non-existence of arbitrage opportunity.

Note : From (I-1) and (I-2) we have W (t2, t1) = W (t1, t2)
−1[Discount rate = reciprocal of Interest

rate] These three conditions restrict the form of W . In fact, we have

Theorem.

W (t1, t2) = e
∫ t2

t1
ρ(t)dt for some ρ(t) > 0.

Proof. Define the average rate of return R(t, T ) by W (t, T ) = eR(t,T )·(T−t) or R (t, T ) = log W (t,T )
T−t .

To get an instantaneous rate of return, we take the limit of T → t. Hence, by (I-1),

ρ (t) = lim
T→t

R (t, T ) = lim
T→t

log W (t, T )
T − t

=
∂

∂T
log W (t, T ) |T=t=

W2 (t, t)
W (t, t)

= W2 (t, t) ,

where W2 (t, T ) = D2 W (t, T ) = ∂
∂T W (t, T ) .

Now we write down the no arbitrage opportunity condition, W (s, t) ·W (t, u) = W (s, u) .
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By differentiating both sides with respect to u and then putting u = t (or, operating ∂
∂u · |u=ton

both sides), we have

W (s, t) ·W2 (t, u) = W2 (s, u)
W (s, t) ·W2 (t, t) = W2 (s, t)

∂

∂t
W (s, t) = W (s, t) · ρ (t)

By integrating, we have

W (s, t) = e
∫ t

s
ρ(σ)dσ.

Further if we assume the condition:

(I-4) W (t1 + s, t2 + s) = W (t1, t2) for ∀t1, t2, s, then we have ρ(t) = ρ = const. Hence W (t, s) =
eρ(s−t).

Note: In terms of P (t), the above equation can be written as: d
dtP (t) = ρ (t) · P (t). By integrating,

we have P (t) = P (0)e
∫ t
0 ρ(σ)dσ.

Assume that time is measured by year. We define the annual interest rate it for year t (i.e. [t, t+1])
by 1+it = e

∫ t+1
t

ρ(σ)dσ.In the case of constant interest we define the annual interest rate by 1+i = eρ.

Remark 1.

An economic theory explains interest as measure of liquidity preference. By liquidity of a financial
asset, we mean the ability of the asset to be readily turned into a sum of money. The nominal
interest rate is what you give up by holding money instead of financial assets; it is the opportunity
cost of holding money, or reward to temporally forgone liquidity. The degree of interest rate depends
on the expectation of future value of the asset. In terms of individual preference, we have

ρ : large =⇒ impatient =⇒ short-sighted
ρ : small =⇒ patient =⇒ fore-sighted .

Remark 2.

Note that in the above we have made the perfect foresight assumption. We have assumed that
the interest is predetermined and is actually paid with no default risk. In the context of social
security pension, most of its asset is invested in safe investment (typically Treasury bonds), which
are considered to satisfy these assumptions. Later we mention how to deal with more general cases
where the interest is stochastic and there is a default risk. Furthermore, we have assumed no
feedback of the financial operations of the fund on the determination of the interest rate. This
may be controversial when we consider a social security fund retaining substantial reserves in the
economy. In this course we do not look into such general equilibrium effects.

1.2 Compound interest

Suppose that you deposit one unit of money in a bank account that pays i percent interest per year.
In the simple interest, the accumulated sum (capital plus interest) in n years is given by (1+ni). The
interest is not transferred into the capital. In the compound interest, on the other hand, interest is
transferred into the capital at the end of every year and interest paid in a year will also earn interest
in the next year and so on. Hence, the accumulated sum in n years is given by (1 + i)n, which is
greater than (1 + ni).

Exc. 1.2.1. Check (1 + i)n > (1 + ni).

In practice, simple interest is used in short-term contracts (usually less than one year) and compound
interest is used in long-term contracts.
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Next we consider compounding m times within a year. Namely we divide one year into m equal
periods and transfer the interest into the capital at the end of each period. If we denote by i(m)

the annual rate of interest (before compounding), then the actual interest rate for a year is given by

(
1 +

i(m)

m

)m

= 1 + i = eρ.

Note that i(1) = i and limn→∞ i(m) = ρ. In fact, i = i(1) > i(2) > i(3) > · · · −→ ρ.

Exc. 1.2.2 Verify numerically that i = i(1) > i(2) > i(3) > · · · −→ ρ.

Formula: ex = limn→∞
(
1 + x

n

)n = 1 + x
1! + x2

2! + x3

3! + · · ·

Tip. To find out how many years it takes for the initial deposit to grow the double amount, there
is a rule of thumb, called the rule of 69. If the interest is compounded continuously at the annual
rate of ρ%, you divide 69 by ρ. For example, if annual rate is 6% then it takes 69/6=11.5 years.
You can replace 69 by 72, which is a bit overestimation (but on the safe side) but has more integral
divisors. (Derive the rule of 69. Hint: log2=0.69 ).

1.3 Cash-flows (payment streams) and their present values

We assume that the interest rate is constant over time, unless otherwise specified. For interest rate
i (or equivalently, the force of interest ρ), we define the discount factor by: v = 1

1+i = e−ρ < 1.

(1) Discrete-time case

(i) General

We begin by discrete-time case. A cash-flow is described by data specifying how much money is
paid at what timing.

U = (Uk, tk)∞k=0 where 0 5 t0 < t1 < t2 < · · ·

These data specify the contract that the amount Uk should be paid at tk. Note that Uk can be
positive or negative. By convention, we understand that positive values represent cash in-flows and
negative values represent cash out-flows. A diagrammatic illustration is convenient for understanding
the cash-flow situation and perform its present value calculation.

The present value of the above cash-flow U is defined by

PV (U) =
∞∑

k=0

Uk

(
1

1 + i

)tk

=
∞∑

k=0

Ukvtk

Exc.1.3.1. Construct a spreadsheet model for calculating the above present value.

Mathemetically, for a sequence A = {an}∞n=0, the series defined by

GA(x) =
∞∑

n=0

anxn

is called its generating function (or generating power series). Indeed, each term of the sequence an

can be recaptured from its generating function by

an =
1
n!

dnGA

dxn
(0) .
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(ii) Annuities

An annuity is a series of constant amount of payments. Note that it is a very particular type of
cash-flow in the sence that the amount of each cash-flow is constant (Uk = const.) and the payment
takes place periodically (tk+1 − tk = const.) . Let us assume that Uk = 1 and tk+1 − tk = 1.

The present value of the payment stream tk = k and Uk = 1 (for k = 0, 1, 2, . . . , n − 1) is called
n-year annuity certain payable at the beginning of each year and denoted by

ä
n| = PV {(1, k) | 0 5 k 5 n− 1} =

n−1∑
k=0

vk =
1− vn

1− v
.

When we want to stress that ä
n| depends on i, we shall write ä

n|(i).

An annuity payable for ever is called perpetuity and denoted by ä∞| = limn−→∞ä
n| = 1

1−v .

Exc. 1.3.2. Confirm the above formula by the above spreadsheet model.

Exc. 1.3.3. Tabulate ä
n|(i) for 0 5 n 5 30 and i = 1%, 2%, . . . , 10%.

In a similar way, we define various types of annuities as the present values of the following payment
streams.

1◦. `-year deferred n-year annuity certain payable at the beginning of each year

Payment stream: tk = k + ` and Uk = 1 (for k = 0, 1, 2, . . . , n− 1)

Notation and formula:

`|än| = PV {(1, k) | ` 5 k 5 ` + n− 1} =
`+n−1∑

k=`

vk = v` 1− vn

1− v
.

2◦. n-year annuity certain payable m-times a year at the beginning of each period Payment stream:
tk = k

m and Uk = 1
m (for k = 0, 1, 2, . . . ,mn− 1)

Notation and formula:

ä
(m)

n|
= PV

{
(

1
m

,
k

m
) | 0 5 k 5 mn− 1

}
=

1
m

mn−1∑
k=0

v
k
m =

1
m
· 1− vn

1− v
1
m

.

3◦. n-year annuity certain payable at the end of each year

Payment stream: tk = k + 1 and Uk = 1 (for k = 0, 1, 2, . . . , n− 1)

Notation and formula:

a
n| = PV {(1, k) | 1 5 k 5 n} =

n∑
k=1

vk = v
1− vn

1− v
.

Remark. In the actuarial context, we encounter ä
n| more often than a

n|. (Give reasons why)

Exc. 1.3.4. Show ä
n| = a

n−1| + 1 = v−1a
n| algebraically and diagrammatically. Explain.

Exc. 1.3.4b Define and derive the formula for `
m |ä

(m)

n|
.

(iii) Varying annuities
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We consider two types of increasing annuity.

The first is the case in which the amount increases in arithmetic progression. Hence the payment
stream tk = k and Uk = k + 1 (for k = 0, 1, 2, . . . , n − 1). We denote the present value of this
cash-flow by

(Iä)
n| = PV {(k, k − 1) | 1 5 k 5 n} =

n∑
k=1

kvk−1 =
1

1− v

(
1− vn

1− v
− nvn

)
.

Exc. 1.3.5. Show that (Iä)
n| = d

dv a
n|. Calculate d

di än|. (Hint: Chain rules)

Exc. 1.3.6. Show that (Iä)
n| =

∑n−1
k=0 k|än−k| algebraically and diagrammatically.

The second case is where the amount increases in geometric progression. This is a typical case in
which the amount is adjusted in line with a steadily increasing index (e.g. wage). The payment
stream is tk = k and Uk = (1 + β)k = wk (for k = 0, 1, 2, . . . , n− 1). We denote (in only this note)
its present value by

ä
[β]

n|
= PV

{
(wk, k) | 0 5 k 5 n− 1

}
=

n−1∑
k=0

wkvk =
1− (wv)n

1− wv
.

By suitably adjusting the discount rate (using the net discount rate), this case is reduced to the case
of normal annuity.

Exc. 1.3.7. Show that ä
[β]

n|
(i) = ä

n|(j) where 1
1+j = 1+β

1+i or j ≈ i− β. Verify numerically.

(2) Continuous-time case

In the continuous-time case, a cash-flow is described by a function f(t) of time t ∈ (0,∞]. The
cash payable between t and t + dt is given by f(t)dt. We define the present value of the continuous
cash-flow f(t) by

PV (f) =
∫ ∞

0

f (t) e−ρtdt = (Lf) (ρ).

Mathematically, this operation is called the Laplace transform (see Mathematical notes)

The continuous analogue of n-year annuity certain is defined as the present value of the continuos

cash-flow given by λn(t) = { 1 (if t 5 n)
0 (if t > n) . We can write λn(t) = H(n − t), where H(t) is the

Heaviside function: H(t) = { 1 (if t = 0)
0 (if t < 0) .

The n-year continuous annuity certain is calculated by

a
n| = PV (λn) =

∫ n

0

e−ρtdt =
1
ρ

(
1− e−ρn

)
.

Exc. 1.3.8. Show that a
n| = limm−→∞ ä

(m)

n|
= limm−→∞ a

(m)

n|
.

Remark(*). The discrete case can be included in the continuous case by using the delta function
(see Mathematical notes). For the discrete cash-flow U = (Uk, tk)∞k=0, the continuous version is
f (t) =

∑∞
k=0 Uk δ (t− tk) . (Check)

(3) Generalisation to time dependent interest rartes
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The above results will hold if the interest rate varies over time. We only need to make the following
modifications to the notation.

PV (U) =
∞∑

k=0

UkVk where Vk =
tk∏

s=1

vs.

PV (f) =
∫ ∞

0

f (t) e−
∫ t
0 ρ(s)dsdt.

Note that in the continuous case, we can no longer see it the Laplace transform. We will rather have
to see it as a functional (Lf) [ρ(t)], that is, a function of function ρ(t).

1.4 Contingent payments and expected present values (*)

Now we modify the contract that the amount is payable on condition that certain events occur. To
specify the payment stream the probability of the contingency should also be given or estimated.

In the case of discrete payment and binary choice (i.e. to pay the full amount or not to pay at all), the
pair U = (Uk, tk, pk) 0 5 t0 < t1 < t2 < · · · describes the congingency cash-flow. To calculate its
expected present value, we first calculate the stream of the expected payment. E(U) = (Uk pk, tk)
since E(Uk) = Uk pk + 0 · (1− pk) = Uk pk.Then (E(Uk), tk) is a normal payment stream. Next, we
calculate its present value

EPV (U) = PV (E(U)) =
∞∑

k=0

Ukpkvk.

Consider a set of random variables aligned over time (stochastic process) {Xt}t∈[0,∞) . Let φt(x) the
p.d.f. of Xt. Then the expected value of is f(t) = E[Xt] =

∫∞
−∞ xφt(x)dx. Hence,

EPV ({Xt}) = PV (E[Xt]) = PV (f) =
∫ ∞

0

f(t)e−ρtdt.

Alternatively, define Z = PV (Xt) =
∫∞
0

Xte
−ρtdt. This is a random variable on (−∞,∞).Let ϕ(z)

be the p.d.f. of Z. Then

EPV ({Xt}) = E[PV (Xt)] = E[Z] =
∫ ∞

−∞
zϕ(z)dz.

(see also section 3.7)

1.5 Recursion formulae - applications to individual savings account and loan amortiza-
tion

In practice, we can write down present value formulae only for very special types of cash-flows.
Recursion formula can be used to treat more general cases. Recursion formula is particularly suitable
to construct the algorithms. We consider here two kinds of situations.

(1) Accumulation of savings account

Consider an individual savings account where the initial capital F0 is invested and an additional
amount of Ct is invested at the end of year t (for t = 1, ..., n). Let Ft be the balance at the end
of year t including the payment Ct. The increase in the balance during the year t consists of the
interest credited on the previous year’s balance and the payment made that year. Thus
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∆Ft−1 = Ft − Ft−1 = iFt−1 + Ct

or Ft = (1 + i)Ft−1 + Ct.

Dividing both sides of the first equation by (1 + i)t and taking summation from t = 1 to n, we have

Ft

(1 + i)t
− Ft−1

(1 + i)t−1
=

Ct

(1 + i)t

Fn

(1 + i)n
− F0 =

n∑
t=1

Ct

(1 + i)t

Fn = (1 + i)nF0 +
n∑

t=1

(1 + i)n−tCt.

This means that the balance at the end of year n consists of the initial fund and cash-flow payments
that accumulate the interest from the time they were invested to the time of evaluation.

Alternatively, by summing the first equation, we have

Ft − F0 =
n∑

t=1

iFt−1 +
n∑

t=1

Ct

The increase between the final and initial balance consists of the sum of cash-flow and the sum of
each year’s interest on the balance at the end of the corresponding year.

Exc. 1.5.1. Consider the balance of an individual savings. Let Bt be the balance at the end of year
t (for t = 1, ..., n) and the initial capital B0 = 0. It is more realistic to assume that the contribution
of Ct is paid at the middle of year t and the rate of return varies over time it. In this situation,
discuss the recuision formula that describes the evolution of the balance from one year to the next.
(Note. in this case one should take into account half-a-year’s interest on the contributions). Derive
the formula for Bt in terms of Ct and it.

Exc. 1.5.2. Construct a spreadsheet model that calculates the balance of the individual retirement
savings account for a model worker from age 20 to 60.

Consider payments are made and interest is credited continuously. Cash-inflow to the fund and
interest credited to the fund between t and t + dt is given C(t)dt and ρF (t)dt respectively.

dF (t) = ρF (t)dt + C(t)dt

dF (t)
dt

= ρF (t) + C(t)

Solving this differential equation with the initial condition at t = 0, we have

F (t) = eρtF (0) +
∫ t

0

eρ(t−s)C(s)ds.

Exc. 1.5.3. Interpret this result in analogy with the discrete case.

Exc. 1.5.4. Consider the case where interest is time-dependent. Ans. F (t) = e
∫ t
0 ρ(s)dsF (0) +∫ t

0
e
∫ t

s
ρ(u)duC(s)ds.
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(2) Loan amortization

Suppose that you borrow P0 and repay (or amortize) this debt (principal) by means of installment
payment R1, R2..., Rn to be made at the end of each year. Let Pt (t = 1, 2, ..., n) be the outstanding
principal i.e., remaining debt immediately after the payment Rt has been made. In order to complete
the repayment by the end of year n, it must be Pn = 0.

Since Pt consists of the previous year’s debt with interest accumulated for one year less Rt, we have

Pt = (1 + i)Pt−1 −Rt.

By rearranging
∆Pt−1 = Pt − Pt−1 = iPt−1 −Rt.

This implies that the change in the outstanding principal (primary balance) is accounted for the
increase due to the interest on running debt and the decrease due to the repayment. So, in order
not to increase the debt, the borrower has to pay at least the interest on the running debt.

Similarly, multiplying the both sides of the first equation by vt (and noting that v = 1
1+i ) and

suming from t = 1 to n, we have

vt−1Pt−1 − vtPt = vtRt

P0 − vnPn =
n∑

t=1

vtRt.

Using Pn = 0, we have the following present value condition.

P0 =
n∑

t=1

vtRt = PV ({Rt}n
t=1).

The repayments Rt may be chosen arbitrary subject to the present value constraint. We list some
standard types of loans.

(i) Under the fixed loan contract, only the interest on the initial debt is paid until the principal is
repaid at the end of the contract.

R1 = R2 = · · · = Rn−1 = iP0 ; Rn = (1 + i)P0

P1 = P2 = · · · = Pn−1 = P0 ; Pn = 0

(ii) Under an annuity loan contract, the principal is repaid by constant payments. From the present
value constraint, the amount of repayment is therefore,

R1 = R2 = · · · = Rn−1 = Rn =
P0

a
n|

.

The debt outstanding decreases exponentially by

Pt = P0(1 + i)t

(
1−

a
t|

a
n|

)
(1 5 t 5 n).

Exc. 1.5.5. Check the above result.

(iii) A series loan is a contract in which the principal outstanding decreases linearly
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Pt = P0(1−
t

n
) (1 5 t 5 n).

The repayment is thus

Rt = iPt −
1
n

P0 = P0 ·
i(n− t + 1)− 1

n
(1 5 t 5 n).

Remark 1. Observe that in the limit n →∞, all the three contracts degenerates to an infinite loan
without repayment. Amortization consists only of interest which is paid indefinitely.

Remark 2. From the result of the annuity loan contract, we see that if we annuitise the capital P0

over n years then the annual amount is P0
a

n|
. Conversely, if one pays annuity of one unit currency

at the end of year for n times, then P0 = a
n|(< n) is the intial capital necessary for this payment.

(Reformulate this for the continuous case)

1.6 Internal rate of return

So far we have investigated in methods of evaluating the present value under a given interest rate.
Now we consider the inverse problem: find the interest rate that equates the present value of a
cash-flow with its price.

(1) Internal rate of return of a financial asset

Suppose a financial asset which entitles n future payments, denoted by s1, ..., sn. Assume the
payment sk is due at time tk (for k = 1, 2, ..., n). If one purchases this asset at a price p, then the
rate of return can be calculated in the following methods.

(i) Simple interest (payments bear no interest)

The condition is

(1 + itn) · p =
n∑

k=1

sk ; hence, i =
∑n

k=1 sk − p

tn · p
.

(ii) Simple interest (payments bear simple interest)

The condition is

(1 + itn) · p =
n∑

k=1

sk · (1 + i(tn − tk)) ; hence, i =
∑n

k=1 sk − p

tn · p−
∑n−1

k=1 sk(tn − tk)
.

(iii) Compoud interest (payments bear compound interest)

The condition is

(1 + i)tn · p =
n∑

k=1

sk · (1 + i)tn−tk

or, p =
n∑

k=1

skvtk = φ(v).

The solution to the above non-linear equation can be found by standard numerical methods. Excel
has a built-in function, IRR(), which calculates internal rates of return.

(a) Line search (Regula falsi)
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Note that φ(v) is an increasing function of v (0 ≤ v ≤ 1) and that φ(0) = 0 < p and usually
φ(1) =

∑
sk > p. Depending on whether φ( 1

2 ) > p or < p, the range of the solution to this equation
is [0, 1

2 ] or [ 12 , 1]. Continuing this we can limit the range of the solution.

(b) The Newton-Raphson method

The solution is approximated by the following iteration scheme:

vi+1 = vi −
φ(vi)− p

φ′(vi)
= vi −

∑n
k=1 skvtk − p∑n
k=1 sktkvtk−1

The initial value may be taken as v0 = 1.

(c) A method using the convexity of φ(v)

A simpler iteration scheme using the fact that φ(v) is a convex increasing function of v (0 5 v 5 1)
is given as follows:

vi+1 =
φ(vsol)
φ(vi)

vi =
p∑n

k=1 skvtk
i

vi

where the initial value is v0 = 1.

If the holder sells this asset at price q at time τ ( tm−1 < τ ≤ tm), then the resulting rate of return is
calculated by applying the same method for the cash stream Sk = sk due at tk (for k = 1, 2, ...,m−1)
and Sm = q due at τ .

Example (bonds)

When a coorporation or a government needs to raise money, they issue bonds and sell them to a
large number of investors. A bond is a certificate, in which the borrower agrees to pay specified
interest (called coupon rate) until a specified date (called maturity date) when a fixed amount is paid
(redemption value). Conventionally the interest rate is applied to the face value which is printed on
the bonds. Usually the redemption value is equal to the face value but it is not necessarily the case.

Suppose an investor pays P for the purchase of a security bond with a face amount F , yearly coupons
C (payable at the end of the year) and remaining running time n years. In the above notation, the
cash stream is written tk = k (for k = 1, 2, ..., n) ; s1 = s2 = · · · = sn−1 = C and sn = C + F .

The formulae corresponding to the cases (i) and (ii) can be written as follows:

Case (i)

i =
nC + F − P

nP
=

C + F−P
n

P

Case (ii)

i =
nC + F − P

nP − n(n−1)
2 C

=
C + F−P

n

P − n−1
2 C

Case (iii) (iteration scheme using method (c))

vi+1 =
P∑n

k=1 Cvk
i + Fvn

i

· vi

Exc. 1.6.1. Evaluate rates of return of various bonds under methods (i) and (iii).

(2) Rate of return of a financial institution

Suppose a financial institution which deals with cash-flows and retains certain assets as reserves.
Consider an operation of a year. Time for that year is denoted by 0 ≤ t ≤ 1.

11



Let

F (t) : reserve at time t

C(t) : (instantaneous) net cash-inflow to the fund incurring at time t

C:cash-flow during the year (=
∫

1
0C(t)dt )

I :investment income during the year

A : reserve at the beginning of the year (= F (0))

B : reserve at the end of the year (= F (1)).

If there is no other financial flow to the institution, by accounting requirement, B−A = C + I holds
as an identity.

The force of return, denoted by ρ, is defined by

dF (t) = ρF (t)dt + C(t)dt.

Hence,

F (t) = F (0)eρt +
∫ t

0

C(s)eρ(t−s)ds

If A,B,C(t) are known, the value of ρ is determined by

B = Aeρ +
∫ 1

0

C(t)eρ(1−t)dt,

and the investment income is given by

I = B −A− C = ρ

∫ 1

0

eρ(1−t)[A +
∫ t

0

C(s)ds]dt

To find ρ in the above equation, we apply the following iteration scheme (the Newton-Raphson
method):

ρi+1 = ρi −
Aeρi +

∫ t

0
C(t)eρi(1−t)dt−B

Aeρi +
∫ t

0
C(t)(1− t)eρi(1−t)dt

A first order approximation, valid if ρ is small, will result

I = B −A− C

= ρ

∫ 1

0

eρ(1−t)[A +
∫ t

0

C(s)ds]dt ≡ ρW

Therefore,

i = eρ − 1 ' ρ =
I

W
.

Note that W =
∫ 1

0
eρ(1−t)[A +

∫ t

0
C(s)ds]dt means the term-weighted average of the reserves in that

year.

Example

Suppose that the cash-flow occurs at the middle of the year, i.e. C(t) = C · δ(t − 1
2 ), where δ(t) is

the delta function. Then,

12



B = Aeρ + Ce
1
2 ρ = A(1 + i) + C

√
1 + i

By solving the above equation with respect to i (assuming linear approximation of the square root,√
1 + x ' 1 + 1

2x, we have

i =
2I

A + B − I
.

This is so-called “Hardy’s formula”.

Exc. 1.6.2. Evaluate rates of return for social security pension schemes.

2. SURVIVAL MODELS AND LIFE TABLES

2.1 The survival function

Survival function represents the boundary that divides the likelihood of a person’s survival status
into alive and dead.

Let R=0 = [0,∞), and consider the function ` : R=0 −→ R=0 (i.e., ` (x) = 0 for x = 0), which
has the following properties.

(S-1) Strictly decreasing ; if x < y then ` (x) > ` (y).

(S-2) limx→∞ `(x) = 0. If there exists ω > 0 such that ` (x) = 0 for x = ω, then ω is called the
limiting age.

(S-3) `(x) is continuously differentiable (i.e., C1-class).

Note: From (i) and (iii), it follows that `′(x) < 0.

For the moment we assume the existance of such functions. We may often write `x instead of `(x).

For an age x > 0 (Note: x does not need to be an integer) and t = 0 , define

tpx =
`x+t

`x
,

tqx = 1− tpx = 1− `x+t

`x
.

These quantities have the following meaning:

tpx = probability that a life aged x will attain age x + t

tqx = probanility that a life aged x will die within t years

In a special case of t = 1, we denote

qx = 1qx ; px = 1px

Clearly, for t, u > 0,

t+upx = upx+t · tpx.

Exc. 2.1.1. Interpret the probablistic meaning of the above relation.

2.2 Force of mortality

The force of mortality at age x > 0 is defined by

µ(x) = µx = − 1
`x

d`x

dx
= −d log `x

dx
.

13



Firstly, from the definition, we have
−d`x = µx`xdx.

Integrating both sides from x to x + t, we have `x − `x+t =
∫ t

0
µx+s`x+sds.Hence,

tqx =
`x − `x+t

`x
=
∫ t

0

µx+s
`x+s

`x
ds =

∫ t

0

µx+s spxds.

and

tpx = 1− tqx =
∫ ∞

t

µx+s spxds.

It is worth noting that we frequently encounter the expression µx+t tpx in this combination. Later
we will investigate the probalistic meaning of this quantity (see 2.5).

Secondly, we start from
d log `x = −µxdx.

Similarly, by integrating both sides from x to x + t, we have

log
(

`x+t

`x

)
= −

∫ x+t

x

µsds = −
∫ t

0

µx+sds,

`x+t = `x e−
∫ t
0 µx+sds, or

tpx = e−
∫ t
0 µx+sds.

From this expression, we have the following important relations (Cf. differentiation under an inte-
gral).

∂tpx

∂x
=

∂

∂x

(
e−

∫ x+t
x

µs ds
)

= e−
∫ x+t

x
µs ds (−µx+t + µx) = tpx (µx − µx+t) .

∂tpx

∂t
=

∂

∂t

(
e−

∫ x+t
x

µs ds
)

= e−
∫ x+t

x
µs ds (−µx+t) = − tpx µx+t.

These (partial differential) equations are known as Kolmogorov-Chapman equations.

Exc.2.2.1. Show d
dx (`xµx) = − d2

dx2 `x ; µx+t = −∂ logt px

∂t .

2.3 Life expectancy

The (complete) life expectancy at age x = 0 is defined by

e◦x =
1
`x

∫ ∞

0

`x+tdt =
∫ ∞

0
tpxdt.

Life expectancy expresses the average residual life at age x > 0. Geometrically, the life expectancy
at age x is equivalent to the horizontal length of the rectangle that has the same area under the tail
of the survival curve (figure).

Exc. 2.3.1. Show e◦x =
∫∞
0

t µx+t tpxdt (Hint. Integration by parts) ; de◦x
dx = µx e◦x − 1 (Hint.

Differentiate and use the relation in 2.2.)

Exc. 2.3.2. Show that e◦x is not necessarily a decreasing function of x, but x + e◦x is an increasing
function of x. Give geometrical and intuitive explanation.
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We call t the half-survival period at age x (or median future lifetime) if `x : `x+t = 2 : 1. Explicitly,
we can write t = `−1( `x

2 )− x.

2.4 Some analytical laws of mortality

(i) de Moivre

This law is given by `x = `0
(
1− x

ω

)α
, (α > 0).

Exc. 2.4.1. Verify µx = α
ω−x , e◦x = ω−x

α+1 .

The historical case due to de Moivre (1724) is the linear case with α = 1. Despite its analytical
tractability, however, the demographic grounds of this model are weak.

(ii) Weibull

This law is defined by `x = `0 exp(−(x
ρ )θ) The force of mortality is then given by µx = θ

ρ (x
ρ )θ−1

(iii) Gompertz-Mekeham

This law takes the form µx = A + Beγx, (A,B, γ > 0). Note that this can also be written
µx = A + Bcx (γ = log c). By suitable choice of parameters, this model fits well for higher ages and
thus is widely used in the context of life and pension insurance.

Range of parameters: 10−4 . A . 10−3, 10−6 . B . 10−5, 1.08 . c . 1.12.

Let us calculate the survival function under this law.

`x = `0 exp
(
−
∫ x

0

µsds

)
= `0 exp

(
−
∫ x

0

(A + Beγs) ds

)
= `0 e−Ax−B

γ (eγx−1) = ksxgcx

.

Here, c = eγ > 1, s = e−A < 1, g = e−
B
γ < 1, k = `0e

B
γ .

From this result, we next derive the life expectancy.

e◦x =
∫ ∞

0
tpxdt =

∫ ∞

0

exp
(
−
∫ t

0

µx+sds

)
dt =

∫ ∞

0

exp
(
−
∫ t

0

A + Beγ(x+s)ds

)
dt.

In the above∫ t

0

(
A + Beγ(x+s)

)
ds = At+Beγx

∫ t

0

eγsds = At+
Beγx

γ
(eγt−1) ≡ At+P (eγt−1) (P =

Beγx

γ
).

Hence
e◦x =

∫ ∞

0

exp
(
P −At− Peγt

)
dt = eP

∫ ∞

0

e−At−Peγt

dt.

Changing variable by z = Peγt, or dz = γPeγtdt = γzdt, thus dt = dz
γz , we have

e◦x = eP

∫ ∞

0

e−Ate−Peγt

dt

= eP

∫ ∞

P

( z

P

)−A
γ

e−z dz

γz

=
1
γ

P
A
γ eP

∫ ∞

P

z−
A
γ −1e−zdz =

1
γ

P
A
γ eP Γ(−A

γ
, P ).
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Where P = Beγx

γ and Γ(s, x) =
∫∞

x
ts−1e−tdt is the (upper) incomplete gamma function.

Historical notes:

In deriving this law, Benjamin Gompertz (1825) considered that ”the average exhaustion of a man’s
power to avoid death to be such that at the end of equal infinitely small intervals of time he lost
equal portions of his remaining power to oppose destruction which he had at the commencement of
these intervals”. If we regard 1

µx
as the methaphor of the ’power to avoid death’ that he refers to,

then the law is written down as d
dx

(
1

µx

)
= −γ 1

µx
. By solving this equation, we have µx = Beγx.

In the same paper, he says that ”it is possible that death may be the consequence of two generally
coexisting causes: the one, chance, without previous disposition to death or deterioration; the
other, a deterioration or increased inability to withstand destruction”. Though the second factor
is adequately taken into account in the above model, he did not consider the first factor. It was
Mekeham (1860) who, along with this suggestion, modified the above model by introducing the
additional constant term.

Examples. Let us look into two special cases of Gompertz-Mekeham law

(i) B = 0 (constant force of mortality, or exponential distribution)

In this case, µx = A hence, `x = `0 e−Ax and e◦x = 1
A

(ii) A = 0 (Gompertz)

In this case, `x = `0 e−
B
γ (eγx−1) and e◦x = − 1

γ eP Ei[−P ] where Ei[z] =
∫ z

−∞
ex

t dt, P = Beγx

γ .

Remark 1. More generally, we can consider: µx =
∑m

i=0 Aix
i +
∑n

j=1 Bje
γjx, (Ai, Bj , γj > 0)

Exc. 2.4.2. In the above generalized model, derive `x for the following special cases.

(a) m = 1, n = 1 (Mekeham’s second law).

(b) m = 0, n = 2 (Lazarus, Hardy)

Remark 2. As a mortality law applicable to whole range of age, Thiele (1871) proposed the following
model.

µx = a1e
−b1x + a2e

− b2
2 (x−c)2 + a3e

b3x, (ai, bi, c > 0).

2.5 Random variable approach (*)

We have derived various probabilistic interpretations from the survival function. Taking the random
variable as the starting point of the theory, we can have an equivalent theory, which we shall skecth
in this section. This approach has an advantage of defining various concepts systematically.

The starting point of this theory is the assumption that the future lifetime of a newborn is a
(continuous) random variable T distributed on [0, ω] with the cummulative distribution function
(c.d.f.) Φ(t) = Pr(T < t). In survival analysis it is convenient to work with the survival function
(i.e., a complement of c.d.f. with respect to 1): Φ̃(t) := 1−Φ(t) = Pr(T = t).The probability density
function (p.d.f.) is defined by φ(t) := Φ′(t). The meaning of p.d.f. is given by φ(t)dt = Pr(t 5 T <
t + dt).

Force of mortality (alternatively called hazard ratio or inverse Mill’s ratio) is defined by µ(t) :=
φ(t)

Φ̃(t)
= − d

dt log Φ̃(t).The meaning of the force of mortality is given by µ(t)dt = φ(t)dt

Φ̃(t)
= Pr(t<T5t+dt)

Pr(T>t) =
Pr(T < t + dt | T = t)

To model the future lifetime of a life aged x > 0, we consider T − x given T = x, namely Tx =
(T − x) | (T = x). Put T0 = T .

The basic quantities associated with Tx can be derived as follows.
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Φ(t | x) = Pr(Tx < t) = Pr(T < x + t | T = x) =
Pr(x 5 T < x + t)

Pr(T = x)
= 1− Φ̃(x + t)

Φ̃(x)
.

Φ̃(t | x) = Pr(Tx = t) = Pr(T = x + t | T = x) =
Pr(T = x + t)

Pr(T = x)
=

Φ̃(x + t)

Φ̃(x)
.

φ(t | x) =
∂

∂t
Φ(t | x) = − ∂

∂t
Φ̃(t | x) =

φ(x + t)

Φ̃(x)
.

µ(t | x) =
φ(t | x)

Φ̃(t | x)
= − ∂

∂t
log Φ̃(t | x).

Equipped with these notions, we can now derive some important relations.

Φ̃(t + u | x) = Φ̃(u | x + t) · Φ̃(t | x). (1)

This equation implies

Pr(T = x + t + u | T = x) = Pr(T = x + t + u | T = x + t) · Pr(T = x + t | T = x). (1’)

µ(t | x) = µ(x + t)

(
check

φ(t | x)

Φ̃(t | x)
=

φ(x + t)

Φ̃(x + t)

)
. (2)

From (2) and the definition of the force of mortality,

∂

∂t
Φ̃(t | x) = −µ(x + t) · Φ̃(t | x) (3)

or
∂

∂t
Φ̃(t) = −µ(t) · Φ̃(t).

By integrating (3) with respect to t with the initial condition Φ̃(t | x) |t=0= 1,

Φ̃(t | x) = exp
(
−
∫ t

0

µ(x + s)ds

)
. (4)

Putting t = 0 in (3) and using Φ̃(t | x) |t=0= 1, we have

µ(x) = − ∂

∂t
Φ̃(t | x) |t=0 (5)

µ(x)dt = −Φ̃(dt | x) = Φ(dt | x) (= Pr(T < x + dt | T = x)) . (5’)

By operating ∂
∂t · |t=0on (1) and using (3) (or alternatively, by differentiating (4)),

∂

∂x
Φ̃(t | x) = (µ(x)− µ(x + t)) · Φ̃(t | x). (6)

From the relation of c.d.f. and p.d.f., definition of mortality force, (2) and (5)

Φ̃(t | x) =
∫ ∞

t

φ(s | x)ds =
∫ ∞

t

µ(x + s) · Φ̃(s | x)ds =
∫ ∞

t

Φ(ds | x + s) · Φ̃(s | x). (7)
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This relation implies

Pr (T = x + t | T = x)

=
∫ ∞

t

Pr(T < x + s + ds | T = x + s) · Pr(T = x + s | T = x)

=
∫ ∞

t

Pr(x + s 5 T < x + s + ds | T = x). (7’)

Exc. 2.5.1. Put P (x | x + t) = Φ̃(t | x). Discuss the similarity between survival model and interest
model by comparing P (x | x + t) and W (x | x + t); and, µ(x) and ρ(t), respectively.

The life expectancy at age x > 0 is defined as the mean of Tx,

e◦x = E[Tx] = E[T − x | T = x] =
∫ ∞

0

tφ(t | x) dt =
∫ ∞

0

Φ̃(t | x) dt.

The median future lifetime med(x) is defined as the age such that Φ̃(med(x) | x) = 1
2 .

Exc. 2.5.2. Write down the formula for V ar[Tx]. (Just write down. You don’t need to simplify your
result.)

Exc. 2.5.3. For the random variable T , we define the limited expected value function E[T ;x] by
E[T ;x] =

∫ x

0
tφ(t) dt+xΦ̃(x).Namely, consider the following random variable which is a cut-off of T

at x : T ∧ x = min(T, x) then put E[T ;x] = E[T ∧ x]. Show that E[T ;x] and e◦x are related through
E[T ] = E[T ;x] + e◦x Φ̃(x).

2.6 Stochastic process approach (*)

One of the drawbacks of the random variable approach is its inherent static feature. There is yet
another approach which explicitly traces the transition of survival status along time. Define

Λ(x)(t) = H(Tx − t) = { 1 (if Tx = t)
0 (if Tx < t) .

An intuitive meaning of this binary random variable is the indicator of survival; that is, it observes
the survival status of a life for every moment and returns the value 1 if alive, and 0 if dead.

Suppose Tx takes a realised value Tx = s, if we see the time development of Λ(x)(t) for a fixed s, we
get a sample life path

λs(t) = Λ(x)(t) |Tx=s= H(s− t).

The distribution of Λ(x)(t) is determined by the following relations

Pr
(
Λ(x)(t) = 1

)
= Pr(Tx = t) = Pr (Λ(x + t) = 1 | Λ(x) = 1) = Pr(T = x + t | T = x).

The above basic quantity that characterises the stochaistic process Λ(x)(t) is called the transition
probability and denoted by

P (x | x + t) = Pr (Λ(x + t) = 1 | Λ(x) = 1) .

Transition intensity is defined by

µ(x) = − lim
t−→0

P (x | x + t)− P (x | x)
t

= − ∂

∂t
P (x | x + t) |t=0= −D2P (x | x) = −P2 (x | x) .
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Exc. 2.6.1. Show that the above defined µ(x) is identical to the force of mortality as defined earlier.

In summary, we have, for a fixed time t,

ETx
[λTx

(t)] =
∫ ∞

0

λs(t)φ(s | x) ds =
∫ ∞

t

φ(s | x)ds = Φ̃(t | x)

= Pr(Tx = t) = Pr
(
Λ(x)(t) = 1

)
=

`x+t

`x
.

Exc. 2.6.2(*). Applying the Law of Large Numbers to the left-hand side of the above equation and
discuss the implication to the relation between sample life path and the survival function.

Remark. Mathematically,
{
Λ(x)(t)

}
t∈[0,∞)

is a 2-state Markov process with state 0 as the absorbing
state. We can, if we wish, reconstruct an equivalent theory by using only the properties of this
Markov process. For instance, Tx is constructed from this process by

Tx = max
{

t | Λ(x)(t) = 1
}

.

The relation
P (x | x + t + u) = P (x + t + u | x + t) · P (x + t | x)

can be shown as follows:

Pr (Λ(x + t + u) = 1 | Λ(x) = 1)

=
Pr(Λ(x + t + u) = 1 ∩ Λ(x + t) = 1 | Λ(x) = 1)

+Pr(Λ(x + t + u) = 1 ∩ Λ(x + t) = 0 | Λ(x) = 1)

= Pr(Λ(x + t + u) = 1 | Λ(x + t) = 1 ∩ Λ(x) = 1) · Pr(Λ(x + t) = 1 | Λ(x) = 1)
= Pr(Λ(x + t + u) = 1 | Λ(x + t) = 1) · Pr(Λ(x + t) = 1 | Λ(x) = 1).

A theoretical advantage of this approach is that it is easy to generalize to multi-state model with
more than two states.

Exc. 2.6.3. From a point of view of social insurance, list up possible status of a worker and consider
the transition between these states (draw the transition graph). What data are necessary to carry
out calculation and how can one estimate them?

2.7 Life table functions

So far we have assumed the existance of smooth survival functions. In practice, however, one cannot
expect to have such functions. A conventional and useful way is to tabulate these functions at integer
values of x.

`0 > `1 > `2 > `3 > · · · > `ω−1 > `ω = 0.

A life table presents these data and values of associated functions:

dx = `x − `x+1,

qx =
dx

`x
= 1− `x+1

`x
,

px = 1− qx =
`x+1

`x
.
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Furthermore, we define

Lx =
∫ x+1

x

`tdt ; Tx =
∞∑

t=x

Lt =
∫ ∞

x

`tdt ; mx =
dx

Lx
=

`x − `x+1

Lx
.

Here mx is called the central death rate (Note. The notation Tx was used earlier to denote a random
variable. Do not confuse.)

Under the approximation

Lx =
∫ x+1

x

`tdt ' `x + `x+1

2
,

we get

Tx =
∞∑

t=0

Lx+t '
`x

2
+

∞∑
t=1

`x+t ; mx =
`x − `x+1

Lx
' 2

`x − `x+1

`x + `x+1
= 2

1− px

1 + px
=

qx

1− 1
2qx

.

The curtate life expectancy is defined by

ex =
1
`x

∞∑
k=1

`x+k.

This is related to the complete life expectancy by

e◦x ' ex +
1
2
.

Exc. 2.7.1. Verify this by using the Euler-Maclaurin summation formula.

In the random variable framework, consider the discretization of the continuous random variable Tx.
Define

Kx = [Tx]

where the squre brackets denote the integer part, i.e. the nearest integer that does not exceed the
value in the brackets. Then Kx is a discrete random variable, which takes values on 0, 1, 2, ..., [ω−x].

From the life table, the probability distribution is derived by:

Pr (Kx = k) = Pr(k 5 Tx < k + 1) = Pr
(
Λ(x)(k + 1) = 0 | Λ(x)(k) = 1

)
= Φ̃(k | x)− Φ̃(k + 1 | x) = Φ(1 | x + k) · Φ̃(k | x)

= qx+k · kpx =
`x+k − `x+k+1

`x

The curtate life expectancy that we defined above can have the following expression.

ex = E[Kx] =
∞∑

k=0

k · Pr (Kx = k) =
∞∑

k=0

k · qx+k · kpx =
∞∑

k=1

kpx.

Exc. 2.7.2. Verify this relation.

2.8 UN model life tables and selection
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In the absence of reliable life tables, we resort to some model tables. UN has developed model life
tables for 5 regional patterns for a wide range of mortality level. The UN model life table used 8
parameter formula

qx = A(x+B)C

+ D exp(−E(log x− log F )2) +
GHx

1 + GHx
.

Usually we select tables with a limited number of clues such as life expectancy at birth (also available
from UN).

Exc. 2.8.1. Choose a life table. Calculate life table functions.

Now suppose we have base population ˜̀(x) and sample data of deaths for a spcified period and
we have chosen a model life table with q̃(x). We see a typical statistical test of the model, called
chi-square test of goodness of fit.

Given the age groups (xk−1, xk] with x0 < x1 < x2 < · · · < xr. With a sample of size n, let dobs
k be

the number of observations of deaths in age class (xk−1, xk] and let d̃k = n∑∞
x=0

˜̀
x

∑xk

x=xk−1
˜̀(x)q̃(xk).

Construct the chi-square statistic

T =
r∑

k=1

(dobs
k − d̃k)2

d̃k

.

Reject the hypothesis that the model fits the data (null hypothesis H0) for a large number of T.
More precisely, we have

T
p→ χ2(r − 1) (as n →∞).

For a given significance level α, the critical value of chi-square distribution Cα such that Pr(T >
Cα) = α under H0 have been tabulated in any standard books on statistics.

2.9 Interpolation of life table functions for fractional ages, approximation of force of
mortality

Life table functions are usually tabulated at integer ages only but we sometimes need to calculate
these values at non-integer age for non-integer duration. The following is a list of assumptions to
get such results. Let x be an integer and 0 < t < 1.

(i) Uniform distribution of deaths: `x+t = (1 − t)`x + t`x+1. Or equivalently put as tqx = t · qx.
Under this assumption

tqx+s =
t · qx

1− s · qx
; µx+t =

qx

1− t · qx
.

(ii) Constant force of mortality: µx+t = µ. This is consistent with the exponential interpolation
ln `x+t = (1− t) ln `x + t ln `x+1. Under this assumption

tqx+s = 1− e−µt ; µx+t = µ.

(iii) Balducci interpolation: 1
`x+t

= 1−t
`x

+ t
`x+1

.

tqx+s =
t · qx

1− (1− t− s)qx
; µx+t =

qx

1− (1− t)qx
.

(iv) Other interpolation methods

One can apply polynomial interpolation which smoothly (i.e. up to the first derivative) links the
curve with the next age intervals on both sides. One of the simplest formula is King-Karup inter-
polation formula:

`x+t = `x + t∆`x−1 +
1
2
t(t + 1)∆2`x−1 +

1
2
t2(t− 1)∆3`x−1.
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Where ∆ is the forward difference operator ∆`x = `x+1 − `x. Note that this assumption requires
not only values `x,`x+1 but also `x−1, `x,`x+1,`x+2. approximation. Since this is a polinomial of t,
we can calculate µx+t with no difficulty.

Next, we consider the estimation of the force of mortality from life table functions. From Taylor
series expansion,

`(x± h) = `(x)± `′(x)h +
1
2!

`′′(x)h2 ± 1
3!

`′′′(x)h3 + · · · ,

we derive the following approximations (by truncation of second and third order respectively):

µx = − 1
`x

d`x

dx
' `x−1 − `x+1

2`x
,

µx = − 1
`x

d`x

dx
' 8(`x−1 − `x+1)− (`x−2 − `x+2)

12`x
.

Note. These results can be obtained by differentiating Stirling’s interpolation formula (see Mathe-
matical notes).

Alternatively,

tpx = e−
∫ x+t

x
µsds, hence

µx+ 1
2
'
∫ x+1

x

µsds = − log px = log(
1

1− qx
) ' qx

1− qx

2

= mx

3. LIFE ANNUITIES

In this section, we combine two building blocks - models of interest and survival - in the earlier
sections and develop a theory of life annuities.

3.1 Some simple life annuities

A whole life annuity provides an annual payment of 1 unit at the beginning of each year as long as
the beneficiary (of initial age x) is alive. Thus its expected present value is

äx =
∞∑

k=0

vk
kpx.

By using the commutation function Dx = vx`x, we can rewrite the formula as follows:

äx =
∞∑

k=0

vk
kpx =

∞∑
k=0

vk `x+k

`x
=

∞∑
k=0

vx+k`x+k

vx`x
=

1
Dx

∞∑
k=0

Dx+k.

We can consider a whole life annuity as a contingent payment whose probability is given by the
survival rates.

äx = EPV {(1, k, kpx) | k = 0, 1, 2, ...} =
∞∑

k=0

vk
kpx.

We consider the following operations:

(i) n-year temporary life annuity

ä
x:n| = EPV {(1, k, kpx) | 0 5 k 5 n− 1} =

n−1∑
k=0

vk
kpx =

1
Dx

n−1∑
k=0

Dx+k.
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(ii) n-year deferred whole life annuity

n|äx = EPV {(1, k, kpx) | n 5 k < ∞} =
∞∑

k=n

vk
kpx =

1
Dx

∞∑
k=n

Dx+k.

(iii) Whole life annuity with n-year term-certain (guarantee period)

In this case, the contingent probability is given by πk = { 1 (0 5 k 5 n− 1)
kpx (k = n)

Thus

EPV {(1, k, πk) | k = 0, 1, 2, ...}
= EPV {(1, k, 1) | 0 5 k 5 n− 1}+ EPV {(1, k, kpx) | n 5 k < ∞}
= ä

n| + n|äx

Exc. 3.1.1. Discuss the sensitivity of äx with respect to x and i. (qualitatively)

Exc. 3.1.2. Let r be the pension age. For x < r, the value CUC
x =r−x| äx correspond to what

situation? Show that CUC
x < CUC

x+1 what is the intuition behind this fact? CUC
x is called the unit

cost contribution rate (for age x).

Exc. 3.1.3. Show that
äx = ä

x:n| +n| äx.

äx = 1 + ax.

Exc. 3.1.4. Define the increasing annuity by (Ia)x =
∑∞

k=1 kvk
kpx. Show (Ia)x =

∑∞
k=0 k|ax.

Derive the formula using Dx.

Exc. 3.1.5. Show that d
dv äx = 1

v (Ia)x. Evaluate d
di äx.

Exc. 3.1.6. Construct a spreadsheet model for calculating these types of life annuities.

3.2 Applications to pensions

(i) Annuitisation

Suppose a worker retired at age x convert the balance in his/her retirement savings (or in the
provident fund) into a whole life annuity. Let us calculate the (non-indexed) annual pension she
gets.

p · äx = Bal ∴ p =
Bal

äx
.

Example. Fiji NPF. China Individual Account.

(ii) Contribution rate under the entry-age normal method (entry-age actuarial contribution)

Under this method, the projected benefit is funded by a level contribution from entry age (x) until
retirement age (r). By equating the expected present values of contributions and benefits, we have

CEAN · ä
x:r−x| = r−x|äx ∴ CEAN = r−x|äx

ä
x:r−x|

.

Exc. 3.2.1. Discuss the sensitivity of CEAN with respect to x and r.

(iii) Reduction rate for early retirement
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Suppose the normal retirement age is r. If a worker opts for an early retirement pension at age
r− n. To make no difference between early retirement and normal retirement, a reduction needs to
be applied to the full pension in case of early retirement. Let ρ be the reduction rate per year of
anticipation

(1− ρ)n · är−n = n|är−n ∴ ρ = 1− n

√
n|är−n

är−n

Exc. 3.2.2. Evaluate ρ. Example. The case of Germany, Japan.

(iv) Conversion of the balance in the savings account into credit

Suppose a provident fund is converted into defined-benefit social insurance pension with the following
pension formula: Pension = (accrual rate) × (indexed career average salary) × (year of contribution)
= aST . Given the accrued rate, how can a given balance be converted into contribution year?
Assume that the indexed career average salary is estimated by the current salary and expected wage
increase β. Then

aTSx(1 + β)r−n ·r−x| äx = Bal ∴ T =
Bal

aSx(1 + β)r−n ·r−x| äx

Exc. 3.2.3. Discuss the advantages and disadvantages of this formula.

Exc. 3.2.4. The following formula is applied in some situation. Discuss the derivation of this formula
and its financial implications. Compare with the above result.

T1 =
Bal

(PV contribution rate)× (Salary at conversion)

3.3 Annuity payable more frequently than once a year

Suppose we divide one year equally into m intervals (each has a length of 1
m ) where m is an integer

> 1. Consider a life annuity of 1 per annum, for a life aged x, with 1
m payable at the beginning of

each m-thly period. The expected present value of this annuity, denoted ä
(m)
x , is given by:

ä(m)
x =

∞∑
k=0

1
m

v
k
m k

m
px =

1
m`x

∞∑
k=0

`x+ k
m

v
k
m =

1
mDx

∞∑
k=0

Dx+ k
m

.

Applying the Woolhouse summation formula, we have

1
mDx

∞∑
k=0

Dx+ k
m

=
1

Dx

[ ∞∑
k=0

Dx+k −
m− 1
2m

(Dx + D∞)− 1
12

m2 − 1
m2

(D′
∞ −D′

x) + · · ·

]
.

Neglecting the terms of second or higher, and noting that D′
x = −Dx (µx + ρ), we have

ä(m)
x = äx −

m− 1
2m

− m2 − 1
12m2

(µx + ρ).

In practice, the following simple formula gives a good enough approximation:

ä(m)
x = äx −

m− 1
2m

.

Exc. 3.3.0. Check that D′
x = −Dx (µx + ρ) .

24



Exc. 3.3.1. Derive the above simple formula for ä
(m)
x by making the following linear approximation:

Dx+t+ k
m

= Dx+t +
k

m
(Dx+t+1 −Dx+t).

Exc. 3.3.2. Show that
a(m)

x = ax +
m− 1
2m

.

3.4 Continuous annuity

This is a continuous analogue of discrete life annuity. The formula is given by

ax =
∫ ∞

0
tpxvtdt =

1
Dx

∫ ∞

0

Dx+tdt.

Substituting

tpx = exp
(
−
∫ t

0

µx+sds

)
; v = e−ρ,

we have

ax =
∫ ∞

0

exp
(
−
∫ t

0

(ρ + µx+s)ds

)
dt.

Alternatively, we can define

ax = lim
m→∞

ä(m)
x ' äx −

1
2

= lim
m→∞

a(m)
x ' ax +

1
2
.

Example. Under the Gompertz-Makeham law µx = A + Beγx,

ax =
∫ ∞

0

exp
(
−
∫ t

0

(ρ + A + Beγ(x+s))ds

)
dt.

We see
∂

∂A
ax =

∂

∂ρ
ax.

Exc. 3.4.1. Interpret the above relation. What about the sensitivity with respect to B?

Exc. 3.4.2. Calculate ax under the Gomperz-Makeham law µx = A + Beγx. [Use the results in 2.4
(formula of e◦x under G-M) with µx = ρ + A + Beγx]

3.5 Complete annuity and its refinement

(1) Complete annuity

In reality, there is some time difference between the last full payment of annuity and the time of
death. We consider a type of life annuity, called the complete annuity, that also pays a final fractional
payment that takes into account this time difference. The provision is as follows:

(i) If the beneficiary is alive at the end of each m-thly period, 1
m is payable .

(ii) At the death of the beneficiary, a final payment which is proportinal to the time elapsed since
the last full payment is paid.
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Note that we have already known the first payment (whole life annuity payable m times at the end
of each period). The expected present valus of the complete annuity, denoted a◦x, is written as:

a◦x = a(m)
x + r(m)

x .

The second term is calculated by

r(m)
x =

1
`x

∞∑
t=0

m−1∑
i=0

∫ 1
m

0

`(x + t +
i

m
+ θ)µ(x + t +

i

m
+ θ)θvt+ i

m +θdθ.

Using the approximation

`(x + t +
i

m
+ θ)µ(x + t +

i

m
+ θ)vt+ i

m +θ

' `(x + t +
i

m
+

1
2m

)µ(x + t +
i

m
+

1
2m

)vt+ i
m + 1

2m = v−xD(x + t +
2i + 1
2m

)µ(x + t +
2i + 1
2m

),

we have,

r(m)
x =

1
Dx

∞∑
t=0

m−1∑
i=0

D(x + t +
2i + 1
2m

)µ(x + t +
2i + 1
2m

)
∫ 1

m

0

θdθ.

In the above,

∞∑
t=0

m−1∑
i=0

D(x + t +
2i + 1
2m

)µ(x + t +
2i + 1
2m

)

=
∞∑

i=0

D(x +
2i + 1
2m

)µ(x +
2i + 1
2m

) ' m

∫ ∞

0

Dx+tµx+tdt = mMx,

∫ 1
m

0

θdθ =
1

2m2
.

Hence,

r(m)
x ' 1

Dx
·mMx ·

1
2m2

=
1

2m

Mx

Dx
.

Therefore

a◦x = a(m)
x + r(m)

x ' ax +
m− 1
2m

+
1

2m

Mx

Dx
.

We use the following approximation

Mx =
∫ ∞

0

Dx+tµx+tdt '
∞∑

t=0

(`x+t − `x+t+1)vx+t+ 1
2 =

∞∑
t=0

dx+tv
x+t+ 1

2

(2) Complete annuity - a more general case

Let us further consider actual administrative constraint.
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(i’) We have assumed that payments are made according to exact age of beneficiaries, but the dates
of payment are usually fixed in the calender (e.g. 1st of March, June, September, December). Thus,
we assume that on average the birthday of beneficiary occurs at the middle of the paymemt period.

(ii’) In case of the death of the beneficiary, a final payment which is proportinal to the time elapsed
since the last full payment is paid at the next payment period.

Let us calculate the present value of this life annuity, denoted by ã
(m)
x . We assume that 1 5 m 5 12

and m divides 12.

First, the annuity payment for living pensioners needs to be modified from a
(m)
x to 1

2m |ä
(m)
x '

ä
(m)
x − 1

2m ' äx − 1
2 . (Or from a

(m)
x to ax)

Second, the expected present value of the final benefit for deceased pensioners is evaluated as follows:

r̃(m)
x =

1
`x

∞∑
t=0

m−1∑
i=0

∫ 1
m

0

`(x + t +
i

m
+ θ)µ(x + t +

i

m
+ θ)

[12θ]+
12

vt+ i+1
m − 1

2m dθ,

where [n]+ denotes the smallest integer that is greater or equal to n. In the above we use the
approximation:

`(x + t +
i

m
+ θ)µ(x + t +

i

m
+ θ)vt+ i+1

m − 1
2m

' `(x + t +
i

m
+

1
2m

)µ(x + t +
i

m
+

1
2m

)vt+ i
m− 1

2m = v−xD(x + t +
2i + 1
2m

)µ(x + t +
2i + 1
2m

).

Hence

r̃(m)
x =

1
Dx

∞∑
t=0

m−1∑
i=0

D(x + t +
2i + 1
2m

)µ(x + t +
2i + 1
2m

)
∫ 1

m

0

[12θ]+
12

dθ

Since

∞∑
t=0

m−1∑
i=0

D(x + t +
2i + 1
2m

)µ(x + t +
2i + 1
2m

)

=
∞∑

i=0

D(x +
2i + 1
2m

)µ(x +
2i + 1
2m

) ' m

∫ ∞

0

Dx+tµx+tdt = mMx,

∫ 1
m

0

[12θ]+
12

dθ =
1

(12)2

∫ k

0

[n]+dn =
1

(12)2

k∑
n=1

n =
1

(12)2
· 1
2
k(k + 1) (mk = 12).

Hence,

r̃(m)
x =

1
Dx

·mMx ·
1

(12)2
· 1
2
k(k + 1) =

k + 1
24

· Mx

Dx
=

m + 12
24m

· Mx

Dx
.

Therefore,

ã(m)
x = 1

2m | ä(m)
x + r̃(m)

x ' äx −
1
2

+
m + 12
24m

· Mx

Dx
.

Note. Another derivation of r̃
(m)
x . Let mk = 12.

r̃(m)
x =

1
`x

∞∑
t=0

[
m−1∑
µ=0

k∑
λ=1

(
`(x + t +

kµ + λ

12
)− `(x + t +

kµ + λ + 1
12

)
)

λ

12
vt+

k(µ+1)
12

]
.
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In the above,

`(x + t +
kµ + λ

12
)− `(x + t +

kµ + λ + 1
12

) ' 1
12

(`x+t − `x+t+1) =
dx+t

12
.

Hence,

r̃(m)
x ' 1

`x

∞∑
t=0

m−1∑
µ=0

k∑
λ=1

dx+t

12
λ

12
vt+

k(µ+1)
12

=
1

(12)2

[ ∞∑
t=0

dx+t

`x

(
m−1∑
µ=0

vt+
k(µ+1)

12

)](
k∑

λ=1

λ

)

' 1
(12)2

[ ∞∑
t=0

dx+t

`x

(
mvt+ 1

2

)] k(k + 1)
2

=
k + 1
24

1
Dx

∞∑
t=0

dx+tv
x+t+ 1

2 .

3.6 Recursion formula, differential equation

In the discrete case, we start from

äx =
∞∑

k=0

vk
kpx.

By replacing kpx by k−1px+1 · 1px we find

äx = 1 + väx+1 px.

The value of äx can be calculated backward, starting with the condition at the limiting age äω = 0.

Exc. 3.6.1. Construct a spreadsheet model for this algorithm. Compare your results with those you
did in 3.1.

In the continuous case, by differentiating

ax =
∫ ∞

0

exp
(
−
∫ t

0

(ρ + µx+s)ds

)
dt,

we find
dax

dx
= (ρ + µx)ax − 1.

Conversely, by integrating the above differential equation with the boundary condition ax = 0 (x =
ω), we retrieve the above expression of ax.

Exc. 3.6.2. Verify this statement.

We can derive the above recursion formula and differential equation by considering the transition
diagram (see figure).

3.7 Probabilistic approach (*)

For simplicity, we hereafter deal with the continuous annuity. However, most statements can be
rephased for the discrete annuity. We start from

ax =
∫ ∞

0

e−ρt
tpx dt =

∫ ∞

0

a
t| tpx µx+t dt.

Exc. 3.7.1. Show this relation [hint: integration by parts]
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First, note that

ax =
∫ ∞

0

a
t| tpx µx+t dt =

∫ ∞

0

a
t| φ(t | x)dt =

∫ ∞

0

a
t| Pr(t 5 Tx < t + dt).

This relation implies that if we define the random variable by Y = a
Tx|, then

ax = E[Y ].

We can also derive further probabilistic characteristics of Y .

The cumulative distribution function (c.d.f.) of Y . By the transform of random variable (see Math-
ematical notes) , we get

F (y) = Φ(−1
ρ

log(1− ρy) | x)

=
`(x− 1

ρ log(1− ρy))

`(x)
.

The probability density function (p.d.f.) of Y .

f(y) = F ′(y) = φ(−1
ρ

log(1− ρy) | x)
1

1− ρy

=
`(x− 1

ρ log(1− ρy)) µ(x− 1
ρ log(1− ρy))

`(x)
1

1− ρy
.

The variance of Y . Recall

V ar[Y ] = E[Y 2]− (E[Y ])2 = E[Y 2]− (ax)2.

Let

Y (t, ρ) = a
t|(ρ) =

∫ t

0

e−ρsds =
1
ρ
(1− e−ρt).

Then

(Y (t, ρ))2 =
1
ρ2

(1− 2e−ρt + e−2ρt) =
2
ρ
(
1− e−ρt

ρ
− 1− e−2ρt

2ρ
) =

2
ρ

(Y (t, ρ)− Y (t, 2ρ)) .

Hence,

E[Y 2] =
2
ρ
(ax − 2ax).

Where 2ax is the life annuity with double force of interest. Therefore,

V ar[Y ] =
2
ρ
(ax − 2ax)− (ax)2.

Exc. 3.7.2. Under the assumption of a constant force of mortality, µ, and of a constant force of
interest, ρ, evaluate

ax = E[Y ] ; V ar[Y ] ; Pr(Y = ax).
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Further derive these quantities under the Gompertz-Mekeham law.

Exc. 3.7.3. Evaluate V ar[Y ] numerically.

Alternatively, note that

ax =
∫ ∞

0

e−ρt
tpx dt =

∫ ∞

0

e−ρt Φ̃(t | x)dt =
∫ ∞

0

e−ρt Pr(Tx = t)dt =
∫ ∞

0

e−ρt Pr(Λ(x)
t = 1)dt.

This relation implies that if we define the stochastic process
{

Λ(x)
t

}
t∈[0,∞)

by Λ(x)(t) = H(Tx − t),

and put the function Z(t) = E[Λ(x)
t ] = Pr(Λ(x)

t = 1), then

ax = PV [Z(t)].

The above two interpretations can be summarised by

ax =
∫ ∞

0

e−ρt Pr(Tx = t)dt =
∫ ∞

0

e−ρt Pr(Λ(x)
t = 1)dt =

∫ ∞

0

a
t| Pr(t 5 Tx < t + dt),

or, put simply as
PV (Pr(Tx = t)) = E[PV (a

Tx|)].

Note that the same arguments run for the discrete case, we simply note the following:

äx =
∞∑

k=0

vk
kpx =

∞∑
k=0

ä
k| · qx+k · kpx =

∞∑
k=0

ä
k| · Pr (Kx = k) .

Exc 3.7.4(***). Suppose a contingent cash-flow is given by stochastic process {Xt}t∈[0,∞) . Consider
the interest is also stochastic {ρt}t∈[0,∞). Assume that Xt and ρs are stochastically independent for

any t and s. Define a ramdom variable by PV =
∫∞
0

Xt exp(−
∫ t

0
ρsds)dt. Discuss the probabilistic

properties of PV , e.g. E[PV ], p.d.f. etc. [You need to consider the joint distributions of {Xt}t∈[0,∞)

and {ρt}t∈[0,∞), which are functionals F (X) and Θ(ρ).] Further, what happens if Xt and ρs are
dependent one another.

3.8 An inequality between life annuity and annuity certain

It is sometimes misunderstood that the life annuity ax is equal to the annuity certain a
n| with

n = e◦x. These two values are different. In fact we have

ax < a
e◦x|

.

Mathematically, this is a direct consequence of Jensen’s inequality, which states that for a random
variable X and a concave function f > 0,

E[f(X)] 5 f(E[X]).

Exc. 3.8.1. Complete the proof of the above inequality. [Apply Jensen’s inequality for X = Tx and
f(t) = a

t|. Show that f ′′ < 0]

Alternatively, we can show this result graphically (see figure).

3.9 Life insurance
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A whole life insurance provides the 1 unit of payment at the time the insured (of initial age x) dies.
We may regard this as the death benefit. In the continuous case, define

Ax =
∫ ∞

0

vt
tpx µx+tdt =

1
Dx

∫ ∞

0

Dx+t µx+tdt =
∫ ∞

0

[
µx+t exp

(
−
∫ t

0

(ρ + µx+s)ds

)]
dt.

Note that

Ax =
∫ ∞

0

e−ρt
tpx µx+t dt =

∫ ∞

0

e−ρt φ(t | x)dt =
∫ ∞

0

e−ρt Pr(t 5 Tx < t + dt).

This relation implies that if we define the random variable by Z = e−ρTx , then

Ax = E[Z].

Exc. 3.9.1. Derive the probability density distribution of Z.

Exc. 3.9.2. Show that a◦x = a
(m)
x + 1

2mAx. Interpret.

Exc. 3.9.3. Show that Ax satisfies the following differential equation. Interpret.

dAx

dx
= (ρ + µx)Ax − µx.

From the definitions of ax and Ax, we have the following relation:

Ax = 1− ρax.

Exc. 3.9.4. Verify the above relation by integration by parts. Show that

dax

dx
= µxax −Ax.

Do these relations hold if interest is time dependent?

In the discrete time case, define

Ax =
∞∑

k=0

`x+k − `x+k+1

`x
vk+1 =

1
`x

∞∑
k=0

dx+kvk+1 =
1

Dx

∞∑
k=0

Cx+k,

where Cx = dxvx+1.

Exc. 3.9.5. Show that
Ax = 1− (1− v)äx = väx − ax.

4. FINANCIAL PERFORMANCE INDICATORS AND THEIR IMPLICATIONS

One of the objectives of the actuarial valuation of social security pension schemes is to set out the
future contribution rates which ensure the long-term solvency of the schemes. The requirements
for the long-term solvency are, in many cases, formulated in terms of financial indicators. We
examine the implications of three financial indicators and develop premium formulae which satisfy
the required financial conditions.

4.1 Financial performance indicators
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Let us consider a defined-benefit pay-as-you-go pension scheme whose resources come from contri-
butions from workers’ payroll, return on investment of the reserves, and (possibly) state subsidy.
The financial operations of the fund are described by the following accounting identities:

R(t) = C(t) + I(t), (4.1.)
C(t) = p(t) · S(t), (4.2.)

∆F (t) = F (t)− F (t− 1) = R(t)−B(t), (4.3.)

where,

R(t) : the total revenue to the fund in year t,

C(t) : the total contributions collected during the year t,

p(t) : the contribution rate in year t,

S(t) : the aggregate contributory salaries in year t,

I(t) : the investment income in year t,

B(t) : the total expenditure of the scheme in year t,

F (t) : the reserve of the fund at the end of year t.

Standardized financial performance indicators are useful for analysing the long-term transition of the
financial status and comparing financial positions of different schemes, rather than the expenditure
and total contributory earnings expressed in nominal terms. We define three financial performance
indicators of a pension scheme, called the pay-as-you-go cost rate, the reserve ratio and the balance
ratio.

Firstly, the PAYG cost rate in year t is defined as

CPAY G(t) =
B(t)
S(t)

. (4.4.)

This is conceived as the contribution rate needed for payment of expenditure in the current year
if costs were to be financed solely from the current contributory earnings. The PAYG cost rate is
further expressed as a product of two factors:

CPAY G(t) = d(t)·θ(t). (4.5.)

Here, d(t) is the demographic dependency ratio, defined by the number of pensioners as a percentage
of the covered population; and, θ(t) is the average replacement ratio, defined by the average pension
as a percentage of the average contributory earnings. This relation implies that if the relative number
of active contributors to pensioners is lower or the relative pension level as compared with the average
contributory earnings is higher, then the PAYG cost rate is higher. If the replacement ratio does
not change significantly over time, the demographic ratio is considered to be the determinant of
the long-term development of the PAYG cost rate. A rapid population ageing may cause a rapid
increase in the PAYG cost rate.

Secondly, the funding ratio (alternatively, reserve ratio) in year t is defined as

a(t) =
F (t− 1)

B(t)
, (4.6.)
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which represents the relative level of the reserve as a multiple of annual expenditure. It represents
how many years the fund (held at the beginning of a year) would be able to pay the current level of
expenditure by liquidating the reserve (assuming that the reserve were fully liquidable). The funding
ratio may be considered as an indicator of the short-term solvency of the scheme. For example, if
pensions are paid monthly, the scheme should retain a reserve at least equal to one month’s benefit
at the beginning of each month, which is approximately 9 % of the annual expenditure. It is worth
remembering that the minimum level of the funding ratio as a working capital is 0.09.

Thirdly, the balance ratio in year t is defined as

b(t) =
B(t)− C(t)

I(t)
. (4.7.)

This indicator represents the amount of expenditure in excess of the income from contributions and
state subsidy expressed as a percentage of the expected interest income. To clarify the meaning of this
indicator, we first note the liquidity of major income available to the fund. While contributions (and
the state subsidy) are equivalent to cash, the liquidity of the investment income generally depends
on the types of assets in investment. Further, the reserve can be used to cover the expenditure.
Usually, special arrangements are necessary to liquidate the assets in investment.

The balance ratio characterizes the status of the fund’s balance in the following manner. Suppose a
newly implemented pension scheme whose expenditure is initially small but gradually increases at a
rate faster than the contributions and eventually exceeds them. In Stage I, where there is sufficient
cash inflow to cover the expenditure (i.e. the contributions exceed the expenditure), the balance
ratio is less than 0. In Stage II, where cash income from contributions is no longer sufficient to
cover the expenditure but the balance is positive if the investment income is taken into account,
the balance ratio takes values between 0 and 1. In this case the value of balance ratio represents
the percentage of investment income that needs to be liquidated in order to finance the amount of
expenditure in excess of the total cash income. Finally, in Stage III, the total revenue is less than
the expenditure and the deficit in the balance should be met by the liquidation of the reserve. In
this case, the balance ratio is greater than 1. The following table summarises the relation between
the cash flow and reserve in terms of the balance ratio.

Balance ratio Balance Cash-flow Re serve Financial status

b(t) < 0 B(t) < C(t) positive increase
contributions exceed expenditure;

no need to liquidate interest income.

b(t) = 0 B(t) = C(t) zero increase
contributions just equal expenditure;
the fund is in pay-as-you-go state.

0 < b(t) < 1 C(t) < B(t) < R(t) negative increase
contributions are less than expenditure;

however, with interest income,
the balance is positive (in surplus).

b(t) = 1 B(t) = R(t) negative stationary
contributions and interest income

equal expenditure; the balance is zero.

b(t) > 1
B(t) > R(t)
(∆F (t) < 0) negative decrease

total income is less than expenditure;
the balance is negative (in deficit)

and reserve is declining.

Note that a negative balance ratio means a positive cash-flow (i.e. contributions less expenditure)
to the scheme, and that a positive balance ratio means a negative cash-flow to the scheme.

Alternatively, the relation between the cash flow and reserve of a pension fund can be described by
using the phase diagram . If we denote by i the annual average rate of return on the investment
of the reserve (for simplicity, i is assumed to be constant over time), then the investment income is
written as

I(t) = i·F (t) + h·D(t), (4.8.)

33



where D(t) = C(t)−B(t) is the cash inflow to the fund and h =
√

1 + i− 1 ' i
2 .

Substituting (4) into (3), we obtain the following difference equation describing the evolution of the
reserve:

∆F (t) =
√

1 + iD(t) + i · F (t). (4.9.)

Then, each point in the upper half domain in the D-F plane represents a financial position of the
fund . The curve drawn in Figure represents the development path of the pension scheme in the
above example. As illustrated in the Figure, the whole upper plane can be divided into three regions
according to the value of the balance ratio. In the above terminology, Stage I corresponds to the
north-east quadrant in which both F and D are positive. Stage II corresponds to the area between
the vertical axis and the downward sloping line

(L) : F = −
√

1 + i

i
·D. (4.10.)

Here, (L) represents a critical line on which the marginal increase in the reserve is zero. Stage III
corresponds to the region left to the line (L).

Exc. Study the financial implication of this indicator.

4.2 Examples of the use of financial performance indicators in selected countries

In this section, we illustrate how financial indicators are actually used in the financing of existing
social security pension schemes. For this purpose, four OECD countries have selected, namely the
USA, Germany, Japan and Canada.

Firstly, under the Old-Age, Survivors and Disability Insurance (OASDI) of the United States, ben-
efits are adjusted according to changes in the consumer price index (CPI). However, there is a
provision which states that if the reserve ratio, named the ”OASDI trust fund ratio”, is less than
20.0 % at the beginning of the year, then the cost-of-living adjustment in benefits in that year will
be limited to the CPI increase or the wage increase, whichever is the lower. In addition, the Trustee
Board of the OASDI Trust Fund has adopted a short-range test of financial adequacy which requires
the ”OASDI trust fund ratio” to be at least equal to 1.0 throughout the next ten years.

Secondly, under the Employee’s Mandatory Pension Insurance of Germany, the contribution rate is
determined every year so that the liquid reserve at the end of the year should be at least equal to
one month of estimated annual expenditure excluding the Federal subsidy. This condition can be
expressed such that the reserve ratio should be more than one-twelfth, i.e. a(t) = 0.09.

Thirdly, according to the 1999 actuarial valuation of the Employee’s Pension Insurance of Japan,
the future contribution rate is determined by the following conditions:

1◦ The contribution rate is raised every five years at a constant rate until a certain target year.

2◦ From the target year, an actuarial level premium, called the ultimate contribution rate, is
applied. The target year is chosen so that the ultimate rate is contained within 20 percent of gross
earnings.

3◦ The scheme secures liquid income sufficient to meet the benefit payment in each year.

4◦ A certain amount of reserve is set up for unanticipated shocks.

Conditions 1◦ and 2◦ lead to the following formula for the future contribution rate:

p(t) = p0 + ∆p([
t− t0

5
] + 1) (for t0 ≤ t ≤ T − 1)

= pmax (for t ≥ T ),

34



where

t0 : Base year of valuation.

p0 : Contribution rate in the base year.

pmax : Ultimate contribution rate.

∆p : Step of increase in the contribution rate for every 5 years.

T : Target year of the ultimate contribution rate (assumed to be 2025).

[x] : The integer part of x.

Conditions 3◦ and 4◦ can be interpreted as b(t) 5 b0, and a(t) = a0, where b0 and a0 are the required
level of balance ration and (liquid) reserve ratio, respectively.

Fourthly, in the 15th actuarial valuation of the Canada Pension Plan, the so-called ”15-year formula”
is applied to determine the contribution rates for the period after 2016. This formula is described
as follows:

1◦ The contribution rate is raised every year at a constant rate.

2◦ The annual rate of increase of the contribution rate is revised every five years.

3◦ The rate of increase is determined as the lowest rate of increase such that, if it were applied for
the next 15 years, the expected reserves at the end of this period would be at least equal to twice
the expenditure in the subsequent year.

From condition 1◦, the formula for the contribution rates after 2016 is

p(t) = pi + ∆pi · (t− ti) (for t = ti + 1, ..., ti + 5 ; ti = t0 + 5i , i = 0, 1, 2...)

where,

ti : Year of i-th contribution review after 2016 (recurring every five years).

pi : Contribution rate in year ti.

∆pi :Annual rate of increase in the contribution rate for ti + 1 ≤ t ≤ ti + 5.

For each year of contribution review at ti, the rate of increase applied for the next 5 years, ∆pi, is
determined in accordance with the condition 3◦, i.e. a(ti + 15) ≥ 2. To estimate a(ti + 15), it has
been assumed that the contribution rate is raised continuously at the constant annual rate ∆pi until
t = ti + 15.

The above-explained provision concerning the schedule of future contribution rates has been changed
in the subsequent amendments of the Act. According to the reports of 16th and 17th actuarial
valuations, the following methods have been applied to set the long-term contribution rates.

1◦ The schedule of increase in contribution rates until 2002 is prescribed and no subsequent
increase is scheduled.

2◦ For the period in and after 2003, a level contribution rate, called the ”steady-state contribution
rate” is applied.

3◦ The ”steady-state contribution rate” is determined as the lowest constant rate which will enable
for the reserve ratio to remain generally constant.

In condition 3◦, the interpretation of the requirement of “generally constant” reserve ratio is left to
the judgement of actuaries and may be redetermined for each valuation. In fact, the comparison of
the reserve ratios in 2030 and 2100 was adopted (i.e. a(2030) = a(2100)) in the 16th valuation. In
the 17th valuation, however, the reserve ratios in 2010 and 2060 were chosen for this purpose (i.e.
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a(2010) = a(2060). The projection results show that a(2010) = 4.12 and a(2060) = 5.38 under the
standard set of assumptions.).

5. METHODS OF EVALUATING THE FINANCIAL SUSTAINABILITY OF PEN-
SION SCHEMES

5.1. Long-term solvency condition and liquidity requirement

To examine the sustainability of a defined-benefit pension scheme from the point of view of the
financial manager, two conditions should be taken into account. One is the long-term solvency on a
discounted present value basis.The other is the liquidity requirement for the benefit payment.

The condition of the long-term solvency of a pension fund is stated by the following equation.

PV [C(t)] + F0 = PV [B(t)]. (5.1.)

Here C(t) is the stream of projected contribution income, F0 is the reserve held on the valuation
date, and E(t) is the stream of projected expenditure; PV [·] is the operation taking the present
value. Note that from this condition it follows that

lim
t→∞

PV [F (t)] = 0. (5.2.)

(Exc. Show the above equation.)

The difference between the left-hand side and right-hand side in the solvency condition (5.1.) is
called ”the actuarial balance”. If a negative actuarial balance is detected it is called ”the unfunded
pension liability” or ”the implicit pension debt”. Namely,

UPL (= IPD) = PV [B(t)]− PV [C(t)]− F0. (5.3.)

To test the long-term solvency, a suitable methodological tool is the actuarial balance sheet, which
looks as follows:

Assets Liabilities
- Reserves (a.1.) F0 - Benefits (b)

∑∞
t=1

E(t)
(1+i)t

- Contributions (a.2.)
∑∞

t=1
C(t)

(1+i)t

- Actuarial balance (a.1.)+(a.2.)-(b)

The actuarial balance sheet compares the sum of the reserves at hands F0 (item a.1.) and the
expected present value of future contributions PV [C(t)] (item a.2.) against the expected present
value of future benefit expenditure PV [E(t)] (item b).

It should be noted that there are several methods of evaluating liabilities in respect of the coverage of
periods . In our analysis, two methods are used. One is the accrued-to-date liability – alternatively
called the “scheme termination” liability – which assumes that the scheme pays only pro rata pensions
corresponding to the past contribution credits. (In the actuarial balance sheet, this liability is
compared with the reserves since the future contributions are not considered.) The other is the open
fund liability – alternatively, the “going-concern” liability – which takes into account not only past
service liabilities but also the benefits corresponding to future contribution credits by the currently
active workers and the new entrants to the scheme.

Second, the liquidity constraint means that at each period of time the scheme has to ensure the cash
income and liquid asset adequate to cover the next payment due.

C(t) + H(t) = B(t) (for each t). (5.4.)
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Here, H(t) denotes the other cash income. Projections of the fund operation based on the estimated
expenditure and tax base are generally used in order to ascertain this condition. The liquidity
constraint can usually be expressed in terms of the performance indicators.

For the purpose of financial planning, we are interested in knowing the minimum contribution rate
that attains predetermined target values of performance indicators in a given target year. By solving
equation (4.5) with the given boundary conditions, we obtain the following formulae.

5.2. Methods of setting long-term contribution rates

In a narrow sence, financing method means methods of setting long-term contribution rates. There
are two typical methods.

A (pure) pay-as-you-go method is to set the contribution rate equal to the benefit expenditure in
the current year.

p(t) = CPAY G(t) =
B(t)
S(t)

(for each t). (5.5.)

If the fund retains certain reserves then the interest income on the reserves can be used to cover the
benefit expenditure, thusby requireing a lower contribution rate. Note that this financing method
satisfies both the solvency and liquidity conditions. (Observe that this contribution rate can be
derived from the liquidity condition with Q(t) = 0.)

An actuarial level premium is calculated by

p(t) = CL =
PV [B(t)]− F0

PV [S(t)]
. (5.6.)

This contribution rate is derived from the solvency condition. Therefore it satisfies the solvency
condition but it does not necessarily meet the liquidity condition Thus, if this method is applied,
the financial manager of a pension fund should ensure that the fund keeps sufficient liquid income.

For the comparison of these methods, it is instructive to draw graghs indicating the time series
development of contribution rates p(t) and the reserves F (t). Also it is worthwhile to discuss the
financial stability under these two methods in the contect of an increasing trend of pay-as-you-go
cost rate (which is plausible under the population ageing )

Between these two extreme cases, a number of intermediate methods are actually applied. One
such example is a Scaled Premium method (for the detail, see Appendix B.) Case studies in the
United States, Germany, Japan and Canada suggest that required conditions in determining the
contribution rate are stated in terms of the financial indicators, in particular, the reserve ratio and
the balance ratio. In fact, it was found that a large class of contribution rates (including the above
three methods) can be obtained by imposing certain conditions in terms of financial indicators. We
call them the Generalized Scaled Premia and will investgate in the following section.

5.3. Generalized Scaled Premium

(1) Statement of the problem

Assume that the initial reserve, assumed future interest rates, and estimated figures of future ex-
penditure and total contributory earnings are given. Then the problem is stated as follows: if a
period of equilibrium and target values of financial indicators are given, then one must find the level
contribution rate such that during the period of equilibrium the resulting financial indicators are
sufficient to meet their target values. Clearly, the higher the contribution rate is, the more likely
the above condition is met. Therefore, one must find the lowest possible contribution rate.

Let n ≤ t ≤ m be the period of equilibrium, and a0, b0, the target values of the reserve ratio and
the balance ratio respectively. Let us denote by GSPn,m(a = a0, b 5 b0) the lowest contribution
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rate which satisfies the above conditions, and call it the Generalized Scaled Premium with respect
to the period of equilibrium n ≤ t ≤ m and target values a0, b0. The term ”Generalized Scaled
Premium” reflects the fact that it provides a generalization of the Scaled Premium, which is the level
contribution rate preserving the accumulated reserves during a given period. In fact, if we denote
by SPn,m the Scaled Premium for the same period as above, then SPn,m = GSPn,m(b 5 1).

(2) Reduction of the problem

In this section, we set out the procedure to determine the Generalized Scaled Premium. For sim-
plicity, we assume 1 ≤ t ≤ m and put GSPm(a = a0, b 5 b0) for GSP1,m(a = a0, b 5 b0).

In order to calculate GSPm(a = a0), we define the contribution rate such that the reserve ratio
attains its target value in year t = d (1 ≤ d ≤ m), i.e. ad = a0, and denote it by Qd(a = a0).

Then it follows that

GSPm(a = a0) = max{ Qd(a = a0) ; 1 ≤ d ≤ m}. (5.7.)

In fact, if the above contribution rate is lower than one of the values of {Qd(a = a0) ; d = 1, ..,m},
say Qh(a = a0) (1 ≤ h ≤ m), then it follows that ah < a0, which means that the condition does
not hold in year t = h.

Similarly, we define Qd(b = b0) by replacing the reserve ratio by the balance ratio in the definition
of Qd(a = a0). Then, we have

GSPm(b 5 b0) = max{ Qd(b = b0) ; 1 ≤ d ≤ m}. (5.8.)

Finally, we obtain

GSPm(a = a0, b 5 b0) = max{GSPm(a ≥ a0), GSPm(b ≤ b0)}. (5.9.)

The above discussion indicates the following procedure to calculate the Generalized Scaled Premium:

(a) Calculate Qd(a = a0) and Qd(b = b0) for each year of the given period of equilibrium.

(b) Take the maximum value of them. The result is the required contribution rate.

In practice, experience has shown that Qd is a monotonically increasing function of d if the PAYG
cost rate increases substantially. In such cases, the value at the end year of the period of equilibrium,
Qm, gives the maximum value.

(3) Premium formulae

We develop the formulae for Qd(a = a0) and Qd(b = b0) in the generic case. You may skip this
section The next section discusses the general case.

Let us summarise the given data:

- Assumed interest rate: i.

- Period of equilibrium: 1 ≤ t ≤ m. (predetermined)

- Target values of the reserve ratio and the balance ratio: a0, b0. (predetermined)

- Initial reserve: F0.

- Estimated values of expenditure and total contributory earnings: B(t), S(t) (1 ≤ t ≤ m).

Our strategy is as follows. Equation (4.9.), seen as the recursion formula of the sequence {F (t)},
describes the evolution of the reserve from one year to the next. If the interest rate and future figures
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of total contributory earnings, expenditure and contribution rates are given, then the contribution
income, the interest income and the total income are determined by equations (4.1.), (4.2.), (4.3.)
and (4.8.). Furthermore, starting with the reserve in the initial year, the reserve in the future years
can be obtained by applying formula (4.9.) successively. Consequently, the independent variables
for the calculation of the future reserve are S(t), B(t), p(t), F0 and i. The liquidity constraint can
be expressed in terms of financial indicators. By solving equation (4.9.) with the given boundary
conditions, we obtain the required results.

The basic equation of the evolution of the reserve (equation (4.9.)) is rewritten as:

vF (t) = F (t− 1) + v
1
2 (pS(t)−B(t)), (5.10.)

where, v = 1
1+i is the discount rate. As we are looking for a level contribution rate, the contribution

rate on the right-hand side of (5.10.) is assumed to be independent of year t.

The solution of this recursion formula is

F (t) = v−t(p
t∑

k=1

vk− 1
2 S(k)−

t∑
k=1

vk− 1
2 B(k) + F0) (for t = 0, 1, 2, 3, ...) (5.11.)

(i) Formula for Qd(a = a0)

The condition is a(d) = a0. Thus, from (4.6.),

F (d− 1) = a0B(d) (5.12.)

Substituting (5.11.) into (5.12.), we obtain the following formula:

p = Qd(a = a0) =
a0v

d−1B(d)− F0 +
∑d−1

k=1 vk− 1
2 B(k)∑d−1

k=1 vk− 1
2 S(k)

, (5.13.)

(for d = 2, 3, 4, ..,m).

Putting a0 = 0 in (5.13.) yields the formula of the actuarial level premium for the period 1 ≤
t ≤ d − 1. Therefore, the concept of Generalized Scaled Premium also includes the actuarial level
premium as a special case.

(ii) Formula for Qd(b = b0)

The condition is b(d) = b0. Thus, from (4.7.),

C(d)−B(d) + b0I(d) = 0. (5.14.)

Substituting (4.2.) and (4.8.) into (5.14.), we obtain

pS(d)−B(d) + b0[(
√

1 + i− 1)(pS(d)−B(d)) + iF (d− 1)] = 0. (5.15.)

By combining (5.11.) and (5.15.), we obtain the following formula:
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p = Qd(b = b0) =
(1 + b0(v−

1
2 − 1))vdB(d) + b0(1− v)

∑d−1
k=1 vk− 1

2 B(k)− F0

(1 + b0(v−
1
2 − 1))vdS(d) + b0(1− v)

∑d−1
k=1 vk− 1

2 S(k)
, (5.16.)

(for d = 1, 2, 3, ..,m).

Putting b0 = 1 in (5.16.) leads to the formula of the Scaled Premium.

Exc(**). Derive the premium formula that guarantees the predetermined liquidation ratio for a
specified target period.

(4) Premium formulae under varying interest rates

1◦. Now we generalize the results obtained in the previous section with a view to:

- Consider the situation where the assumed interest rate is time dependent (i.e. i = i(t) ).

- Give the formula over an arbitrary period of equilibrium n ≤ t ≤ m (n < m).

- Rewrite the formula in a form more suitable for numerical calculation.

2◦. When the assumed interest rate depends on time, the basic equation (equation (5) or (14) in
the paper) is written

F (t) = (1 + i(t))F (t− 1) +
√

1 + i(t) · (pS(t)−B(t)), or (5.17.)

v(t)F (t) = F (t− 1) + v(t)
1
2 · (pS(t)−B(t)),

where v(t) = 1
1+i(t) .

To solve this equation we introduce the following notations:

V (t) =
t∏

k=1

v(k) ; W (t) = V (t− 1) · v(t)
1
2 (for t = 1, 2, 3, ...). (5.18.)

Put, as a convention, that V (0) = 1.

By multiplying V (t− 1) to both sides of the second equation, we have

V (t)F (t) = V (t− 1)F (t− 1) + pW (t)S(t)−W (t)B(t). (Note V (t) = V (t− 1) · v(t)). (5.19.)

From this, for t ≥ n,

t∑
k=n

[V (k)F (k)− V (k − 1)F (k − 1)] =
t∑

k=n

[pW (k)S(k)−W (k)B(k)]. (5.20.)

Therefore, we have the solution in the following form:

V (t)F (t) = V (n− 1)F (n− 1) + p(S(t)− S(n− 1))− (B(t)−B(n− 1)) (5.21.)

Here, we put
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S(t) =
t∑

k=1

S(k)W (k) ; B(t) =
t∑

k=1

B(k)W (k). (5.22.)

3◦. We give the formulae for Qd(a = a0) and Qd(b = b0) over the period of equilibrium n ≤ t ≤ m.
We denote these rates by Qd(a = a0;n, m) and Qd(b = b0;n, m), respectively.

The given data are summarised as follows:

- Interest rate: i = i(t). (equivalently, discount rate v(t) = 1
1+i(t) .)

- Period of equilibrium: n ≤ t ≤ m.

- Target values of the reserve ratio and the balance ratio: a0 and b0.

- Initial reserve: F (n− 1).

- Projected expenditure and total contributory earnings: B(t) and S(t).

By similar calculation, corresponding to formula (5.13.) we have

p = Qd(a = a0;n, m) =
a0V (d− 1)B(d)− V (n− 1)F (n− 1) + (B(d− 1)−B(n− 1))

S(d− 1)− S(n− 1)
,

(5.23.)

(for d = n + 1, n + 2, ..,m)

Corresponding to formula (5.16.), we have

p = Qd(b = b0;n, m)

=
(1 + b0(v(d)−

1
2 − 1))V (d)B(d) + b0(1− v(d))(B(d− 1)−B(n− 1))− V (n− 1)F (n− 1)

(1 + b0(v(d)−
1
2 − 1))V (d)S(d) + b0(1− v(d))(S(d− 1)− S(n− 1))

(5.24.)

(for d = n, n + 1, ...,m)

4◦. We derive a more general formula for Qd(b = b0).

Recall the short-term liquidity condition:

C(t) + H(t) = E(t),

where

C(t) : Contribution income (in cash) in year t
H(t) : Cash income other than contributions in year t
E(t) : Expenditure in year t.

A theoretical range of H(t) is given by:

0 5 H(t) 5 F (t− 1) + I(t),

where

F (t− 1) : Reserve at the beginning of year t
I(t) : Investment income in year t.
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Thus,
H(t) = αI(t) + βF (t− 1),

with α, β ∈ [0, 1].

Here, α and β represent the portion of liquidable investment income and that of reserves, respectively.

We define the liquid ratio by

l(t) =
E(t)− C(t)

H(t)
=

E(t)− C(t)
αI(t) + βF (t− 1)

.

In the case where the expenditure exceeds the contributions income, the liquid ratio represents the
excess expenditure as a percentage of the total liquidable income. Note that l(t) = b(t) if α = 1 and
β = 0.

Consider the GSP that guarantees a given target value of l0 for a period [n, m] (for given α and β).
Then by similar process, we have

GSPn,m(l = l0) = max{Qd(l = l0) ; n 5 d 5 m}

and

Qd(l = l0;n, m) =
[1 + l0α(v−

1
2

d − 1)]VdEd + l0[α(1− vd) + βvd](Ed−1 − En−1 − Vn−1Fn−1)

[1 + l0α(v−
1
2

d − 1)]VdSd + l0[α(1− vd) + βvd](Sd−1 − Sn−1)

(for d = n, . . . ,m).

Note that if α = 1 and β = 0, we have Qd(l = l0) = Qd(b = l0).

(5) Policy for setting the target levels

Mathematically, the Generalized Scaled Premium is obtained by putting additional conditions to the
basic equation of the evolution of the reserve. It is thus important to discuss what is the adequate
required levels of the reserve ratio and the balance ratio. As shown earlier, each country adopts
different requirements and develops its own rules for their national social security pension scheme.

5.4. Discussions on further issues [Note. This section is still a sketchy draft ]

We consider the process of actuarial valuation and raise key issues for discussion.

(1) We have assumed that the projected values of future benefit expenditure and contributory salaries
are there. But the first task of actuaries is to produce these projected values.

Actuary’s problem (Stage I) : Estimate B(t) and S(t) for future time t.

We have simulation models to do this (ILO-POP, ILO-PENS). An issue is how to make demographic
and economic assumptions, justify their plausibility and ensure their consistency. (A steady-state
analysis)

(2) The next task of actuaries is to determine the long-term contribution rates based on the projected
stream.

Actuary’s problem (Stage II): Determine p(t) for future time t.

We have seen major financing methods. The issue here is how to choose the suitable financing
system, including setting key financial policy variables.

(3) Once the future contribution rates are set out, the task of the financial manager is to maximize
the investment return while meeting liquidity requirement. This is a dual problem to the actuary’s
and can be stated as follows:
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Financial manager’s problem: Given p(t), find the optimal portfolio in order to (a) maximize the
period until the time of exhaustion of the reserve or (b) maximize the resulting reserve for a given
period [0, n]

Issue: Pension fund usually is a large investor and has huge influence on the capital market. Matching
of liquid return and liability. Pension ALM.

(4) Financial evaluation of reform

Actuarial projections can be used to evaluate the effects of a pension reform. This is done by
comparing key reform indicators of before and after the reform.

Contribution rates: pstatus quo and preform.

Unfunded pension liability: UFLstatus quo and UFLreform

Issue: Actuaries’ involvement in the policy making. (from financial evaluation to welfare evaluation)

(5) Check and control

Generally there is a discrepancy between the projected amounts and the actual performance. An ex
post analysis should be conducted to check whether this is due to trend or fluctuation. A first task
is to look into the the accounting: compare the performance and projection.

(6) Extension of scope for macro-economic analysis

One application is to consider the expenditure on social security as a whole in national system of
account

(7) Sensitivity tests and stochastic control

In the above approach the estimated future benefit and contributory base are deterministic. To cope
with the uncertainty in the demographic and economic assumptions, a usual solution is to undertake
a sensitivity analysis based on alternative assumptions.

A better theoretical framework is to consider B(t) and S(t) as random variables Then, we have
to treat the solvency and liquidity conditions as a stochastic control problem. For example, the
condition of the long-term solvency should now read as.

EPV [C(t)] + F0 = EPV [B(t)].

Here EPV [·] is the operation taking the expected present value.

Exc. Does this condition imply the following ?

lim
t→∞

EPV [F (t)] = 0.

Exc. Formulate the above problem as that of stochastic optimal control.

Exc. Discuss the case where interest rate (i.e. discount rate) is time dependent, and the case where
it is further correlated with B(t) and S(t).

A restriction to this approach is that we probably have to assume tractable model (e.g. Brownian
motion) as it seems quite difficult to estimate arbitrary stochastic processes (although we could
assume some correlations between certain variables as economic theory predicts).

(8) Issues in inter-generational transfer

In the above approach, the problem of pension financing is viewed as that of a representative social
planner (the financial manager) with an infinite time horizon. Although this approximation is
sensible in the aggregate level, it is not sufficient when we look into intergenerational redistribution
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effects of PAYG pension schemes. The generational accounting is the generally used approach for
this type of analysis. Whilst the actuarial balance sheet captures the scheme’s net surplus or debt
in the aggregate, the generational accounting breaks it down into the net pension transfer of each
generation. The sum of the generational accounts over all generations, including future new entrants,
is thus equivalent to the actuarial balance on the open fund basis.

(8) Economic effects of social security pensions

In addition to income redistribution, social security pensions are thought to have economic imple-
cations such as (i) retirement decision of a worker (labour force supply approach, early retirement)
(ii) lifetime income allocation between savings and consumption. (Empirical evidences and their
causality analysis.)
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